Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2013 Oct 23;8(10):e77047. doi: 10.1371/journal.pone.0077047. eCollection 2013.

Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions.

Author information

  • 1School of Life Science, Shanxi University, Taiyuan, Shanxi, PR China ; College of Life Science, Zhejiang University, Hangzhou, Zhejiang, PR China.

Abstract

Hydrogen sulfide (H2S) is a gasotransmitter and plays an important role in many physiological processes in mammals. Studies of its functions in plants are attracting ever growing interest, for example, its ability to enhance drought resistance in Arabidopsis. A general role of microRNAs (miRNAs) in plant adaptive responses to drought stress has thereby increased our interest to delve into the possible interplay between H2S and miRNAs. Our results showed that treating wild type (WT) Arabidopsis seedlings with polyethylene glycol 8000 (PEG8000) to simulate drought stress caused an increase in production rate of endogenous H2S; and a significant transcriptional reformation of relevant miRNAs, which were also triggered by exogenous H2S in WT. When lcd mutants (with lower H2S production rate than WT) were treated with PEG8000, they showed lower levels of miRNA expression changes than WT. In addition, we detected significant changes in target gene expression of those miRNAs and the corresponding phenotypes in lcd, including less roots, retardation of leaf growth and development and greater superoxide dismutase (SOD) activity under drought stress. We thereby conclude that H2S can improve drought resistance through regulating drought associated miRNAs in Arabidopsis.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk