Format

Send to:

Choose Destination
See comment in PubMed Commons below
Lipids Health Dis. 2013 Nov 4;12:165. doi: 10.1186/1476-511X-12-165.

Nrf2 deletion causes "benign" simple steatosis to develop into nonalcoholic steatohepatitis in mice fed a high-fat diet.

Author information

  • 1Department of Basic Veterinary Science, College of Veterinary Medicine Northeast Agricultural University, Harbin, Heilongjiang 150030, China. zhangxiuying@neau.edu.cn.

Abstract

BACKGROUND:

Nonalcoholic fatty liver disease begins with the aberrant accumulation of triglyceride in the liver. Its spectrum includes the earliest stage of hepatic simple steatosis (SS), nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Generally, hepatic SS is often self-limited; however 10%-30% of patients with hepatic SS progress to NASH. The cause(s) of the transition from SS to NASH are unclear. We aimed to test the contribution of nuclear erythroid 2-related factor 2 (Nrf2) on the progression of "benign" SS to NASH in mice fed a high fat diet. In doing so, we discovered the influence of fatty acid in that progression.

METHOD:

The involvement of Nrf2 in defending against the development of NASH was studied in an experimental model induced by a high-fat diet. Wild-type and Nrf2-null mice were fed the diet. Their specimens were analyzed for pathology as well as for fatty acid content and ratios.

RESULT:

In feeding the high-fat diet to the Wild-type and the Nrf2-null mice, the Wild-type mice increased hepatic fat deposition without inflammation or fibrosis (i.e., simple steatosis), while the Nrf2-null mice had significantly more hepatic steatosis and substantial inflammation, (i.e., nonalcoholic steatohepatitis). In addition, as a result of the high-fat diet, SFA (C20: 0, C22: 0) and MUFA (C18: 1, C20: 1) content in Nrf2-null mice were significantly higher than in Wild-type mice. In the Nrf2-null mice the PUFA/TFA ratio decreased; conversely, the MUFA/TFA ratio increased.

CONCLUSION:

The deletion of Nrf2 causes "benign" SS to develop into NASH in mice fed with a high-fat diet, through prompt fatty acid accumulation and disruption of hepatic fatty acid composition in the liver.

PMID:
24188280
[PubMed - indexed for MEDLINE]
PMCID:
PMC3826845
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk