Format

Send to:

Choose Destination
See comment in PubMed Commons below
Arch Biochem Biophys. 2014 Feb 15;544:75-86. doi: 10.1016/j.abb.2013.10.014. Epub 2013 Oct 30.

Functionally diverse biotin-dependent enzymes with oxaloacetate decarboxylase activity.

Author information

  • 1Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.
  • 2Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA. Electronic address: martin.stmaurice@marquette.edu.

Abstract

Biotin-dependent enzymes catalyze carboxylation, decarboxylation and transcarboxylation reactions that participate in the primary metabolism of a wide range of organisms. In all cases, the overall reaction proceeds via two half reactions that take place in physically distinct active sites. In the first half-reaction, a carboxyl group is transferred to the 1-N' of a covalently tethered biotin cofactor. The tethered carboxybiotin intermediate subsequently translocates to a second active site where the carboxyl group is either transferred to an acceptor substrate or, in some bacteria and archaea, is decarboxylated to biotin and CO2 in order to power the export of sodium ions from the cytoplasm. A homologous carboxyltransferase domain is found in three enzymes that catalyze diverse overall reactions: carbon fixation by pyruvate carboxylase, decarboxylation and sodium transport by the biotin-dependent oxaloacetate decarboxylase complex, and transcarboxylation by transcarboxylase from Propionibacterium shermanii. Over the past several years, structural data have emerged which have greatly advanced the mechanistic description of these enzymes. This review assembles a uniform description of the carboxyltransferase domain structure and catalytic mechanism from recent studies of pyruvate carboxylase, oxaloacetate decarboxylase and transcarboxylase, three enzymes that utilize an analogous carboxyltransferase domain to catalyze the biotin-dependent decarboxylation of oxaloacetate.

Copyright © 2013 Elsevier Inc. All rights reserved.

KEYWORDS:

Biotin; Decarboxylation; Enzyme; Oxaloacetate decarboxylase; Pyruvate carboxylase; Transcarboxylase

PMID:
24184447
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

Miscellaneous

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk