Format

Send to:

Choose Destination
See comment in PubMed Commons below
MBio. 2013 Oct 29;4(6):e00661-13. doi: 10.1128/mBio.00661-13.

A critical role for the putative NCS2 nucleobase permease YjcD in the sensitivity of Escherichia coli to cytotoxic and mutagenic purine analogs.

Author information

  • 1Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.

Abstract

The base analogs 6-N-hydroxylaminopurine (HAP) and 2-amino-HAP (AHAP) are potent mutagens in bacteria and eukaryotic organisms. Previously, we demonstrated that a defect in the Escherichia coli ycbX gene, encoding a molybdenum cofactor-dependent oxidoreductase, dramatically enhances sensitivity to the toxic and mutagenic action of these agents. In the present study, we describe the discovery and properties of a novel suppressor locus, yjcD, that strongly reduces the HAP sensitivity of the ycbX strain. Suppressor effects are also observed for other purine analogs, like AHAP, 6-mercaptopurine, 6-thioguanine, and 2-aminopurine. In contrast, the yjcD defect did not affect the sensitivity to the pyrimidine analog 5-fluorouracil. Homology searches have predicted that yjcD encodes a putative permease of the NCS2 family of nucleobase transporters. We further investigated the effects of inactivation of all other members of the NCS2 family, XanQ, XanP, PurP, UacT, UraA, RutG, YgfQ, YicO, and YbbY, and of the NCS1 family nucleobase permeases CodB and YbbW. None of these other defects significantly affected sensitivity to either HAP or AHAP. The combined data strongly suggest that YjcD is the primary importer for modified purine bases. We also present data showing that this protein may, in fact, also be a principal permease involved in transport of the normal purines guanine, hypoxanthine, and/or xanthine.

IMPORTANCE:

Nucleotide metabolism is a critical aspect of the overall metabolism of the cell, as it is central to the core processes of RNA and DNA synthesis. At the same time, nucleotide metabolism can be subverted by analogs of the normal DNA or RNA bases, leading to highly toxic and mutagenic effects. Thus, understanding how cells process both normal and modified bases is of fundamental importance. This work describes a novel suppressor of the toxicity of certain modified purine bases in the bacterium Escherichia coli. This suppressor encodes a putative high-affinity nucleobase transporter that mediates the import of the modified purine bases. It is also a likely candidate for the long-sought high-affinity importer for the normal purines, like guanine and hypoxanthine.

PMID:
24169576
[PubMed - indexed for MEDLINE]
PMCID:
PMC3809563
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk