Format

Send to

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2013 Nov 27;117(47):14808-16. doi: 10.1021/jp4084713. Epub 2013 Nov 14.

Data driven, predictive molecular dynamics for nanoscale flow simulations under uncertainty.

Author information

  • 1Chair of Computational Science, ETH Zürich , Clausiusstrasse 33, CH-8092, Zürich, Switzerland.

Abstract

For over five decades, molecular dynamics (MD) simulations have helped to elucidate critical mechanisms in a broad range of physiological systems and technological innovations. MD simulations are synergetic with experiments, relying on measurements to calibrate their parameters and probing "what if scenarios" for systems that are difficult to investigate experimentally. However, in certain systems, such as nanofluidics, the results of experiments and MD simulations differ by several orders of magnitude. This discrepancy may be attributed to the spatiotemporal scales and structural information accessible by experiments and simulations. Furthermore, MD simulations rely on parameters that are often calibrated semiempirically, while the effects of their computational implementation on their predictive capabilities have only been sporadically probed. In this work, we show that experimental and MD investigations can be consolidated through a rigorous uncertainty quantification framework. We employ a Bayesian probabilistic framework for large scale MD simulations of graphitic nanostructures in aqueous environments. We assess the uncertainties in the MD predictions for quantities of interest regarding wetting behavior and hydrophobicity. We focus on three representative systems: water wetting of graphene, the aggregation of fullerenes in aqueous solution, and the water transport across carbon nanotubes. We demonstrate that the dominant mode of calibrating MD potentials in nanoscale fluid mechanics, through single values of water contact angle on graphene, leads to large uncertainties and fallible quantitative predictions. We demonstrate that the use of additional experimental data reduces uncertainty, improves the predictive accuracy of MD models, and consolidates the results of experiments and simulations.

[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk