Send to:

Choose Destination
See comment in PubMed Commons below
NMR Biomed. 2013 Dec;26(12):1870-8.

Cell layers and neuropil: contrast-enhanced MRI of mouse brain in vivo.


Contrast-enhanced T₁- and T₂-weighted MRI at 9.4 T and in-plane resolutions of 25 and 30 µm has been demonstrated to differentiate between neural tissues in mouse brain in vivo, including granule cell layers, principal cell layers, general neuropil, specialized neuropil and white matter. In T₁-weighted MRI of the olfactory bulb, hippocampus and cerebellum, contrast obtained by the intracranial administration of gadopentetate dimeglumine (Gd-DTPA) reflects the extra- and intracellular spaces of gray matter in agreement with histological data. General neuropil areas are highlighted, whereas other tissues present with lower signal intensities. The induced contrast is similar to that in plain T₂-weighted MRI, but offers a 16-30-fold higher contrast-to-noise ratio. Systemic administration of manganese chloride increases the signal-to-noise ratio in T₁-weighted MRI to a significantly greater extent in principal cell layers and specialized neuropil than in granule cell layers, whereas gadolinium-enhanced MRI indicates no larger intracellular spaces in these tissues. Granule cell layers are enhanced no more than general neuropil by manganese, whereas gadolinium-enhanced MRI indicates significantly larger intracellular spaces in the cell layers. These discrepancies suggest that the signal increase after manganese administration reflects cellular activity which is disproportionate to the intracellular space. As a result, principal cell layers and specialized neuropil become highlighted, whereas granule cell layers, general neuropil and white matter present with lower signal intensities.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk