Send to:

Choose Destination
See comment in PubMed Commons below
Semin Oncol. 2013 Oct;40(5):537-48. doi: 10.1053/j.seminoncol.2013.07.010.

Decoding the pathophysiology and the genetics of multiple myeloma to identify new therapeutic targets.

Author information

  • 1Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA; Division of Hematology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital and Chulalongkorn University, Thai Red Cross Society, Bangkok, Thailand.


In recent years, significant progress has been achieved in the characterization of the transcriptional profiles, gene mutations and structural chromosomal lesions in myeloma cells. These studies have identified many candidate therapeutic targets, which are recurrently deregulated in myeloma cells. However, these targets do not appear, at least individually, to represent universal driver(s) of this disease. Furthermore, evaluation of these recurrent lesions does not suggest that they converge to a single molecular pathway. Detailed integration of molecular and functional data for these candidate targets and pathways will hopefully dissect which of them play more critical roles for each of the different individual molecular defined subtypes of this disease. This review focuses on how recent updates in our understanding of myeloma pathogenesis and molecular characterization may impact ongoing and future efforts to develop new therapeutics for this disease.

© 2013 Published by Elsevier Inc.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk