Send to:

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2013 Nov 13;135(45):17078-89. doi: 10.1021/ja407985m. Epub 2013 Nov 5.

New continuous fluorometric assay for bacterial transglycosylase using Förster resonance energy transfer.

Author information

  • 1Genomics Research Center, Academia Sinica , 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.


The emergence of antibiotic resistance has prompted scientists to search for new antibiotics. Transglycosylase (TGase) is an attractive target for new antibiotic discovery due to its location on the outer membrane of bacteria and its essential role in peptidoglycan synthesis. Though there have been a few molecules identified as TGase inhibitors in the past thirty years, none of them have been developed into antibiotics for humans. The slow pace of development is perhaps due to the lack of continuous, quantitative, and high-throughput assay available for the enzyme. Herein, we report a new continuous fluorescent assay based on Förster resonance energy transfer, using lipid II analogues with a dimethylamino-azobenzenesulfonyl quencher in the lipid chain and a coumarin fluorophore in the peptide chain. During the process of transglycosylation, the quencher-appended polyprenol is released and the fluorescence of coumarin can be detected. Using this system, the substrate specificity and affinity of lipid II analogues bearing various numbers and configurations of isoprene units were investigated. Moreover, the inhibition constants of moenomycin and two previously identified small molecules were also determined. In addition, a high-throughput screening using the new assay was conducted to identify potent TGase inhibitors from a 120,000 compound library. This new continuous fluorescent assay not only provides an efficient and convenient way to study TGase activities, but also enables the high-throughput screening of potential TGase inhibitors for antibiotic discovery.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk