Send to:

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2013 Nov 19;85(22):11068-76. doi: 10.1021/ac402761s. Epub 2013 Nov 8.

Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes.

Author information

  • 1Department of Microsystems Engineering, IMTEK, University of Freiburg , Georges-Koehler Allee 103, 79110 Freiburg, Germany.


Cell migration has been recognized as one hallmark of malignant tumor progression. By integrating the method of electrical cell-substrate impedance sensing (ECIS) with the Boyden chamber design, the state-of-the-art techniques provide kinetic information about cell migration and invasion processes in three-dimensional (3D) extracellular matrixes. However, the information related to the initial stage of cell migration with single-cell resolution, which plays a unique role in the metastasis-invasion cascade of cancer, is not yet available. In this paper, we present a microfluidic device integrated with ECIS for investigating single cancer cell migration in 3D matrixes. Using microfluidics techniques without the requirement of physical connections to off-chip pneumatics, the proposed sensor chip can efficiently capture single cells on microelectrode arrays for sequential on-chip 2D or 3D cell culture and impedance measurement. An on-chip single-cell migration assay was successfully demonstrated within several minutes. Migration of single metastatic MDA-MB-231 cells in their initial stage can be monitored in real time; it shows a rapid change in impedance magnitude of approximately 10 Ω/s, whereas no prominent impedance change is observed for less-metastasis MCF-7 cells. The proposed sensor chip, allowing for a rapid and selective detection of the migratory properties of cancer cells at the single-cell level, could be applied as a new tool for cancer research.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk