Send to:

Choose Destination
See comment in PubMed Commons below
Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5025-8. doi: 10.1109/EMBC.2013.6610677.

Metric learning for automatic sleep stage classification.


We introduce in this paper a metric learning approach for automatic sleep stage classification based on single-channel EEG data. We show that learning a global metric from training data instead of using the default Euclidean metric, the k-nearest neighbor classification rule outperforms state-of-the-art methods on Sleep-EDF dataset with various classification settings. The overall accuracy for Awake/Sleep and 4-class classification setting are 98.32% and 94.49% respectively. Furthermore, the superior accuracy is achieved by performing classification on a low-dimensional feature space derived from time and frequency domains and without the need for artifact removal as a preprocessing step.

[PubMed - in process]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Write to the Help Desk