Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Discov. 2013 Dec;3(12):1355-63. doi: 10.1158/2159-8290.CD-13-0310. Epub 2013 Sep 27.

Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors.

Author information

  • 1Departments of 1Medicine and 2Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute; 3Harvard Medical School; 4Ludwig Institute for Cancer Research; 5Department of Neurosurgery, Massachusetts General Hospital; 6Belfer Institute for Applied Cancer Science; 7Department of Pathology, Brigham and Women's Hospital, Boston; 8Broad Institute, Cambridge, Massachusetts; 9UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and 10Department of Molecular Pharmacology and Therapeutics, Oncology Institute, Loyola University, Chicago, Illinois; 11Department of Physiology, University of Valencia, Valencia, Spain.

Abstract

The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape and mechanistically link treatment response to PD-1 inhibition.

SIGNIFICANCE:

We show that autochthonous EGFR-driven lung tumors inhibit antitumor immunity by activating the PD-1/PD-L1 pathway to suppress T-cell function and increase levels of proinflammatory cytokines. These findings indicate that EGFR functions as an oncogene through non-cell-autonomous mechanisms and raise the possibility that other oncogenes may drive immune escape.

©2013 AACR.

PMID:
24078774
[PubMed - indexed for MEDLINE]
PMCID:
PMC3864135
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk