Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
FASEB J. 1990 Mar;4(5):1450-9.

Cobalamin-dependent methionine synthase.

Author information

  • 1Biophysics Research Division, University of Michigan, Ann Arbor 48109.

Abstract

Cobalamin-dependent methionine synthase catalyzes the transfer of a methyl group from N5-methyltetrahydrofolate to homocysteine, producing tetrahydrofolate and methionine. Insufficient availability of cobalamin, or inhibition of methionine synthase by exposure to nitrous oxide, leads to diminished activity of this enzyme. In humans, severe inhibition of methionine synthase results in the development of megaloblastic anemia, and eventually in subacute combined degeneration of the spinal cord. It also results in diminished intracellular folate levels and a redistribution of folate derivatives. In this review, we summarize recent progress in understanding the catalysis and regulation of this important enzyme from both bacterial and mammalian sources. Because inhibition of mammalian methionine synthase can restrict the incorporation of methyltetrahydrofolate from the blood into cellular folate pools that can be used for nucleotide biosynthesis, it is a potential chemotherapeutic target. The review emphasizes the mechanistic information that will be needed in order to design rational inhibitors of the enzyme.

PMID:
2407589
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk