Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Ann Occup Hyg. 2013 Nov;57(9):1148-66. doi: 10.1093/annhyg/met042. Epub 2013 Sep 12.

Properties that influence the specific surface areas of carbon nanotubes and nanofibers.

Author information

  • 1US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, MS-R7 4676 Columbia Parkway, Cincinnati, OH 45226, USA;

Abstract

Commercially available carbon nanotubes and nanofibers were analyzed to examine possible relationships between their Brunauer-Emmett-Teller specific surface areas (SSAs) and their physical and chemical properties. Properties found to influence surface area were number of walls/diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. Characterization by electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and post-production treatments. In this study, how different properties may influence surface area is discussed. The materials examined have a wide range of surface areas. The measured surface areas differed from product specifications, to varying degrees, and between similar products. Findings emphasize the multiple factors that influence surface area and mark its utility in carbon nanomaterial characterization, a prerequisite to understanding their potential applications and toxicities. Implications for occupational monitoring are discussed.

KEYWORDS:

BET-specific surface area; carbon nanotube; nanofiber; nanomaterial

PMID:
24029925
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk