Format

Send to

Choose Destination
See comment in PubMed Commons below
ACS Nano. 2013 Oct 22;7(10):8573-82. doi: 10.1021/nn402644g. Epub 2013 Sep 17.

Effect of folate-targeted nanoparticle size on their rates of penetration into solid tumors.

Author information

  • 1Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States.

Abstract

Targeted therapies are emerging as a preferred strategy for the treatment of cancer and other diseases. To evaluate the impact of a high affinity targeting ligand on the rate and extent of tumor penetration of different sized nanomedicines, we have used intravital multiphoton microscopy to quantitate the kinetics of tumor accumulation of a homologous series of folate-PEG-rhodamine conjugates prepared with polyethylene glycols (PEG) of different molecular weights. We demonstrate that increasing the size of the folate-PEG-rhodamine conjugates results in both longer circulation times and slower tumor penetration rates. Although a "binding site barrier" is observed with the folate-linked polymers in folate receptor expressing tumors, ligand targeting eventually leads to increased tumor accumulation, with endocytosis of the targeted nanocarriers contributing to their enhanced tumor retention. Because the effects of nanocarrier size, shape, chemistry, and targeting ligand are interconnected and complex, we suggest that these parameters must be carefully optimized for each nanocarrier to ensure optimal drug delivery in vivo.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk