Send to:

Choose Destination
See comment in PubMed Commons below
C R Biol. 2013 Aug;336(8):375-83. doi: 10.1016/j.crvi.2013.07.002. Epub 2013 Aug 22.

A bird's-eye view on the modern genetics workflow and its potential applicability to the locust problem.

Author information

  • 1Departamento de Genetica, Facultad de Ciencias, Universidad de Granada, Fuentenueva S/N, 18071 Granada, Spain. Electronic address:


Genetics is an immense science and the current developments in its methods and techniques as well as the fast emerging tools make it one of the most powerful biological sciences. Indeed, from taxonomy and ecology to physiology and molecular biology, every biological science makes use of genetics techniques and methods at one time or another. In fact, development in genetics is such that it is now possible to characterize and analyze the expression of the whole set of genes of virtually every living organism, even if it is a non-model one. Locusts are notorious for the damage they cause to the ecosystems and economies of the areas affected by their recurrent population outbreaks. To prevent and deal with these outbreaks, we now count on both biological as well as chemical agents that are proving to be successful in reducing the damage that otherwise locust population outbreaks might cause. However, a better, efficient and environmentally friendly solution is still a hoped-for target. In my opinion, the ideal future pesticide should be both environmentally friendly, risk free and species-specific. To reach the knowledge needed for the development of such species-specific anti-locust agent, deep and accurate knowledge of the locusts' genetics and molecular biology is a must. Since genes and their expression levels lie at the bottom of every biological phenomenon, any species-specific solution to the locust problem requires a good knowledge of these organisms' genes as well as the quantitative and spatio-temporal dynamics of their expression. To reach such knowledge, collaborative work is needed as well as a clear workflow that, given the fast development in the genetics tools, is not always clear to all research groups. For this reason, here I describe a genetics workflow that should allow taking advantage of the most recent genetics tools and techniques to answer question relating to locust biology. My hope is that the adoption of this and other work strategies by different research groups, especially when the work is a collaborative one, would provide precious information on the biology and the biological phenomena that these economically important organisms exhibit.

Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.


Gene expression; Genetics; Grasshoppers; Locusts; Microarrays; Next generation sequencing; Orthoptera; RNAi

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk