Display Settings:


Send to:

Choose Destination
Bioprocess Biosyst Eng. 2014 May;37(5):755-64. doi: 10.1007/s00449-013-1045-9. Epub 2013 Sep 8.

Biodegradation of chestnut shell and lignin-modifying enzymes production by the white-rot fungi Dichomitus squalens, Phlebia radiata.

Author information

  • 1Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.


As a discarded lignocellulosic biomass, chestnut shell is of great potential economic value, thus a sustainable strategy is needed and valuable for utilization of this resource. Herein, the feasibility of biological processes of chestnut shell with Dichomitus squalens, Phlebia radiata and their co-cultivation for lignin-modifying enzymes (LMEs) production and biodegradation of this lignocellulosic biomass was investigated under submerged cultivation. The treatment with D. squalens alone at 12 days gained the highest laccase activity (9.42 ± 0.73 U mg(-1)). Combined with the data of laccase and manganese peroxidase, oxalate and H2O2 were found to participate in chestnut shell degradation, accompanied by a rapid consumption of reducing sugar. Furthermore, specific surface area of chestnut shell was increased by 77.6-114.1 % with the selected fungi, and total pore volume was improved by 90.2 % with D. squalens. Meanwhile, the surface morphology was observably modified by this fungus. Overall, D. squalens was considered as a suitable fungus for degradation of chestnut shell and laccase production. The presence of LMEs, H2O2 and oxalate provided more understanding for decomposition of chestnut shell by the white-rot fungi.

[PubMed - in process]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk