Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS One. 2013 Aug 26;8(8):e74478. doi: 10.1371/journal.pone.0074478. eCollection 2013.

Isolation and characterization of a novel strain of mesenchymal stem cells from mouse umbilical cord: potential application in cell-based therapy.

Author information

  • 1Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.

Abstract

Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have recently been recognized as a potential source for cell-based therapy in various preclinical animal models, such as Parkinson's disease, cerebral ischemia, spinal cord injury, and liver failure; however, the precise cellular and molecular mechanisms underlying the beneficial outcomes remain under investigation. There is a growing concern regarding rejection and alteration of genetic code using this xenotransplantation approach. In this study, a novel strain of murine MSCs derived from the umbilical cord of wild-type and green fluorescent protein (GFP) transgenic mice have been successfully isolated, expanded, and characterized. After 10 passages, the mUC-MSCs developed a rather homogeneous, triangular, spindle-shaped morphology, and were sub-cultured up to 7 months (over 50 passages) without overt changes in morphology and doubling time. Cell surface markers are quite similar to MSCs isolated from other tissue origins as well as hUC-MSCs. These mUC-MSCs can differentiate into osteoblasts, adipocytes, neurons, and astrocytes in vitro, as well as hematopoietic lineage cells in vivo. mUC-MSCs also possess therapeutic potential against two disease models, focal ischemic stroke induced by middle cerebral artery occlusion (MCAo) and acute hepatic failure. Subtle differences in the expression of cytokine-related genes exist between mUC-MSCs and hUC-MSCs, which may retard and jeopardize the advance of cell therapy. Allografts of these newly established mUC-MSCs into various mouse disease models may deepen our insights into the development of more effective cell therapy regimens.

PMID:
23991222
[PubMed - indexed for MEDLINE]
PMCID:
PMC3753309
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk