Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2013 Oct;41(19):e186. doi: 10.1093/nar/gkt766. Epub 2013 Aug 28.

Sequence-specific microscopic visualization of DNA methylation status at satellite repeats in individual cell nuclei and chromosomes.

Author information

  • 1Division of Epigenomics and Development, Medical Institute of Bioregulation, and Epigenome Network Research Center, Kyushu University, Fukuoka 812-8582, Japan, The Cancer Institute, Tangshan People's Hospital, Hebei 063001, China, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67404 Illkirch, Cité Universitaire de Strasbourg, France, Department of Epigenetics Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan, Division of Medical Genetics, Saitama Children's Medical Center, Saitama 339-8551, Japan and Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan.

Abstract

Methylation-specific fluorescence in situ hybridization (MeFISH) was developed for microscopic visualization of DNA methylation status at specific repeat sequences in individual cells. MeFISH is based on the differential reactivity of 5-methylcytosine and cytosine in target DNA for interstrand complex formation with osmium and bipyridine-containing nucleic acids (ICON). Cell nuclei and chromosomes hybridized with fluorescence-labeled ICON probes for mouse major and minor satellite repeats were treated with osmium for crosslinking. After denaturation, fluorescent signals were retained specifically at satellite repeats in wild-type, but not in DNA methyltransferase triple-knockout (negative control) mouse embryonic stem cells. Moreover, using MeFISH, we successfully detected hypomethylated satellite repeats in cells from patients with immunodeficiency, centromeric instability and facial anomalies syndrome and 5-hydroxymethylated satellite repeats in male germ cells, the latter of which had been considered to be unmethylated based on anti-5-methylcytosine antibody staining. MeFISH will be suitable for a wide range of applications in epigenetics research and medical diagnosis.

PMID:
23990328
[PubMed - indexed for MEDLINE]
PMCID:
PMC3799461
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk