Low-voltage electron-probe microanalysis of Fe-Si compounds using soft X-rays

Microsc Microanal. 2013 Dec;19(6):1698-708. doi: 10.1017/S1431927613012695. Epub 2013 Aug 28.

Abstract

Conventional electron-probe microanalysis has an X-ray analytical spatial resolution on the order of 1-4 μm width/depth. Many of the naturally occurring Fe-Si compounds analyzed in this study are smaller than 1 μm in size, requiring the use of lower accelerating potentials and nonstandard X-ray lines for analysis. Problems with the use of low-energy X-ray lines (soft X-rays) of iron for quantitative analyses are discussed and a review is given of the alternative X-ray lines that may be used for iron at or below 5 keV (i.e., accelerating voltage that allows analysis of areas of interest <1 μm). Problems include increased sensitivity to surface effects for soft X-rays, peak shifts (induced by chemical bonding, differential self-absorption, and/or buildup of carbon contamination), uncertainties in the mass attenuation coefficient for X-ray lines near absorption edges, and issues with spectral resolution and count rates from the available Bragg diffractors. In addition to the results from the traditionally used Fe Lα line, alternative approaches, utilizing Fe Lβ, and Fe Ll-η lines, are discussed.