Format

Send to

Choose Destination
See comment in PubMed Commons below
Methods Mol Biol. 2013;1042:181-95. doi: 10.1007/978-1-62703-526-2_13.

Electron spectroscopic tomography of specific chromatin domains.

Author information

  • 1Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.

Abstract

The eukaryotic genome is packaged within the nucleus as poly-nucleosome 10 nm chromatin fibres. The nucleosome core particle, the fundamental chromatin subunit, consists of a DNA molecule wrapped around a histone octamer. Biochemical modifications of both the DNA and histone proteins have been characterized that influence chromatin structure and function. These modifications include DNA methylation, histone variants and posttranslational modifications of the core histone protein tails. An outstanding area for investigation in the field of nuclear cell biology is the characterization of the functional relation between these biochemical modifications and the underlying chromatin structure and nuclear sub-compartmentalization. Electron spectroscopic tomography is a high-resolution microscopy technique that facilitates visualization of individual 10 nm chromatin fibres in three dimensions. The method, therefore, has a role to play in exploring the relationships of the epigenome and nuclear organization. Correlating immunofluorescence microscopy with electron spectroscopic tomography provides a powerful approach to relate epigenetic marks with high resolution chromatin organization.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk