Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Langmuir. 2013 Sep 24;29(38):11982-90. doi: 10.1021/la4019579. Epub 2013 Sep 16.

Enhancing on-surface mismatch discrimination capability of PNA probes by AuNP modification of gold(111) surface.

Author information

  • 1Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata-700 032, India.


Unambiguous identification of single base mismatches in nucleic acid sequences is of great importance in nucleic acid detection assays. However, ambiguities are often encountered with, and therefore, a strategy for attaining substantially large enhancement of mismatch discrimination has been worked upon in this study. Short single-stranded peptide nucleic acid (PNA) and deoxyribonucleic acid (DNA) sensor probes that are immobilized onto gold nanoparticle (AuNP) modified Au(111) surface have been applied for target DNA detection. It will be shown that while both PNA and the analogous DNA probes exhibit generally better target detection abilities on the AuNP-modified Au(111) surface (elicited from fluorescence-based measurement of on-surface Tm values), compared to the bare Au(111) surface, PNA supersedes DNA, for all sizes of AuNPs (10, 50, and 90 nm) applied, with the difference being quite drastic in the case of the smallest 10 nm AuNP. It is found that while the AuNP curvature plays a pivotal role in target detection abilities of the PNA probes, the changes in the surface roughness caused by AuNP treatment do not exert any significant influence. This study also presents a means for preparing PNA-AuNP hybrids without altering PNA functionality and without AuNP aggregation by working with the surface-affixed AuNPs.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk