Send to:

Choose Destination
See comment in PubMed Commons below
Acta Biomater. 2013 Dec;9(12):9568-77. doi: 10.1016/j.actbio.2013.08.023. Epub 2013 Aug 22.

In vitro hemocompatibility and vascular endothelial cell functionality on titania nanostructures under static and dynamic conditions for improved coronary stenting applications.

Author information

  • 1Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham University, Ponekkara PO, Cochin 682041, Kerala, India.


The usefulness of nanoscale topography in improving vascular response in vitro was established previously on hydrothermally modified titanium surfaces. To propose this strategy of surface modification for translation onto clinically used metallic stents, it is imperative that the surface should be also hemocompatible: an essential attribute for any blood-contacting device. The present in vitro study focuses on a detailed hemocompatibility evaluation of titania nanostructures created through an alkaline hydrothermal route on metallic Ti stent prototypes. Direct interactions of TiO2 nanocues of various morphologies with whole blood were studied under static conditions as well as using an in vitro circulation model mimicking arterial flow, with respect to a polished Ti control. Nanomodified stent surfaces upon contact with human blood showed negligible hemolysis under constant shear and static conditions. Coagulation profile testing indicated that surface roughness of nanomodified stents induced no alterations in the normal clotting times, with insignificant thrombus formation and minimal inflammatory reaction. Endothelialized nanomodified Ti surfaces were found to inhibit both activation as well as aggregation of platelets compared with the control surface, with the endothelium formed on the nanosurfaces having an increased expression of anti-thrombogenic genes. Such a nanotextured Ti surface, which is anti-thrombogenic and promotes endothelialization, would be a cost-effective alternative to drug-eluting stents or polymer-coated stents for overcoming in-stent restenosis.

Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.


Coronary stents; Endothelialization; Hemocompatibility; Nanotopography; Titania

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk