Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Infect Dis. 2013 Aug 21;13:386. doi: 10.1186/1471-2334-13-386.

Novel bioinformatics strategies for prediction of directional sequence changes in influenza virus genomes and for surveillance of potentially hazardous strains.

Author information

  • 1Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama-shiShiga-ken, 526-0829, Japan.

Abstract

BACKGROUND:

With the remarkable increase of microbial and viral sequence data obtained from high-throughput DNA sequencers, novel tools are needed for comprehensive analysis of the big sequence data. We have developed "Batch-Learning Self-Organizing Map (BLSOM)" which can characterize very many, even millions of, genomic sequences on one plane. Influenza virus is one of zoonotic viruses and shows clear host tropism. Important issues for bioinformatics studies of influenza viruses are prediction of genomic sequence changes in the near future and surveillance of potentially hazardous strains.

METHODS:

To characterize sequence changes in influenza virus genomes after invasion into humans from other animal hosts, we applied BLSOMs to analyses of mono-, di-, tri-, and tetranucleotide compositions in all genome sequences of influenza A and B viruses and found clear host-dependent clustering (self-organization) of the sequences.

RESULTS:

Viruses isolated from humans and birds differed in mononucleotide composition from each other. In addition, host-dependent oligonucleotide compositions that could not be explained with the host-dependent mononucleotide composition were revealed by oligonucleotide BLSOMs. Retrospective time-dependent directional changes of mono- and oligonucleotide compositions, which were visualized for human strains on BLSOMs, could provide predictive information about sequence changes in newly invaded viruses from other animal hosts (e.g. the swine-derived pandemic H1N1/09).

CONCLUSIONS:

Basing on the host-dependent oligonucleotide composition, we proposed a strategy for prediction of directional changes of virus sequences and for surveillance of potentially hazardous strains when introduced into human populations from non-human sources. Millions of genomic sequences from infectious microbes and viruses have become available because of their medical and social importance, and BLSOM can characterize the big data and support efficient knowledge discovery.

PMID:
23964903
[PubMed - indexed for MEDLINE]
PMCID:
PMC3765179
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk