Au-ionic liquid functionalized reduced graphene oxide immunosensing platform for simultaneous electrochemical detection of multiple analytes

Biosens Bioelectron. 2014 Jan 15:51:184-90. doi: 10.1016/j.bios.2013.07.051. Epub 2013 Aug 3.

Abstract

In this work, an Au-ionic liquid functionalized reduced graphene oxide nanocomposite (IL-rGO-Au) was fabricated via the self-assembly of ionic liquid functionalized reduced graphene oxide (IL-rGO) and gold nanoparticles (AuNPs) by electrostatic interaction. The IL-rGO can be synthesized and stabilized by introducing the cations of the amine-terminated ionic liquids (IL-NH2) into the graphene oxide (GO). With the assistance of IL-NH2, AuNPs were uniformly and densely absorbed on the surfaces of the IL-rGO. The proposed IL-rGO-Au nanocomposite can be used as an immunosensing platform because it can not only facilitate the electrons transfer of the electrode surface but also provide a large accessible surface area for the immobilization of abundant antibody. To assess the performance of the IL-rGO-Au nanocomposite, a sandwich-type electrochemical immunosensor was designed for simultaneous multianalyte detection (carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) as model analytes). The chitosan (CS) coated prussian blue nanoparticles (PBNPs) or cadmium hexacyanoferrate nanoparticles (CdNPs) and loaded with AuNPs were used as distinguishable signal tags. The resulting immunosensor exhibited high selectivity and sensitivity in simultaneous determination of CEA and AFP in a single run. The linear ranges were from 0.01 to 100 ng mL(-1) for both CEA and AFP. The detection limits reached 0.01 ng mL(-1) for CEA and 0.006 ng mL(-1) for AFP, respectively. No obvious nonspecific adsorption and cross-talk was observed during a series of analyses to detect target analytes. In addition, for the detection of clinical serum samples, it is well consistent with the data determined by the ELISA, indicating that the immunosensor provides a possible application for the simultaneous multianalyte determination of CEA and AFP in clinical diagnostics.

Keywords: Alpha-fetoprotein; Au nanoparticle; Carcinoembryonic antigen; Electrochemical immunosensor; Ionic liquid functionalized reduced graphene oxide.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques / methods*
  • Carcinoembryonic Antigen / analysis*
  • Electrochemical Techniques / methods
  • Gold / chemistry
  • Graphite / chemistry*
  • Humans
  • Immunoassay / methods
  • Ionic Liquids / chemistry*
  • Limit of Detection
  • Nanoparticles / chemistry
  • Oxidation-Reduction
  • Oxides / chemistry*
  • alpha-Fetoproteins / analysis*

Substances

  • Carcinoembryonic Antigen
  • Ionic Liquids
  • Oxides
  • alpha-Fetoproteins
  • Gold
  • Graphite