Physical properties and cytotoxicity comparison of experimental gypsum-based biomaterials with two current dental cement materials on L929 fibroblast cells

J Conserv Dent. 2013 Jul;16(4):331-5. doi: 10.4103/0972-0707.114364.

Abstract

Aim: To evaluate physical properties and cytotoxicity of pure gypsum-based (pure-GYP) and experimental gypsum-based biomaterials mixed with polyacrylic acid (Gyp-PA). The results were compared with calcium hydroxide (CH) and glass ionomer cement (GIC) for application as base/liner materials.

Materials and methods: Vicat's needle was used to measure the setting time and solubility (%) was determined by percentage of weight loss of the materials following immersion in distilled water. For cytotoxicity test, eluates of different concentrations of materials were obtained and pipetted onto L-929 mouse fibroblast cultures and incubated for 3 days. Cellular viability was assessed using Dimethylthiazol diphenyltetrazolium bromide test to determine the cytotoxicity level. Statistical significance was determined by one-way analysis of variance followed by post hoc test (P < 0.05).

Results: Setting time was significantly higher for pure-GYP and Gyp-PA; solubility test showed a similar tendency (pure-Gyp > Gyp-PA > CH = GIC). The pure-Gyp was found as the least cytotoxic materials at different concentrations. At 100 mg/mL dilutions of materials in growth medium highest cytotoxicity was observed with CH group.

Conclusion: Cytotoxic effect was not observed with pure-Gyp; application of this novel biomaterial on deeper dentin/an exposed pulp and possibility of gradual replacement of this biodegradable material by dentin like structure would be highly promising.

Keywords: Cytotoxicity; lining materials; pure α-hemihydrate gypsum; setting time; solubility.