Send to:

Choose Destination
See comment in PubMed Commons below
Phys Rev Lett. 2013 Aug 2;111(5):058102. Epub 2013 Jul 30.

Extrinsic noise driven phenotype switching in a self-regulating gene.

Author information

  • 1Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel.


Analysis of complex gene regulation networks gives rise to a landscape of metastable phenotypic states for cells. Heterogeneity within a population arises due to infrequent noise-driven transitions of individual cells between nearby metastable states. While most previous works have focused on the role of intrinsic fluctuations in driving such transitions, in this Letter we investigate the role of extrinsic fluctuations. First, we develop an analytical framework to study the combined effect of intrinsic and extrinsic noise on a toy model of a Boolean regulated genetic switch. We then extend these ideas to a more biologically relevant model with a Hill-like regulatory function. Employing our theory and Monte Carlo simulations, we show that extrinsic noise can significantly alter the lifetimes of the phenotypic states and may fundamentally change the escape mechanism. Finally, our theory can be readily generalized to more complex decision making networks in biology.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Physical Society
    Loading ...
    Write to the Help Desk