Send to:

Choose Destination
See comment in PubMed Commons below
J Chem Phys. 2013 Aug 14;139(6):064901. doi: 10.1063/1.4816706.

Understanding the relationship between molecular order and charge transport properties in conjugated polymer based organic blend photovoltaic devices.

Author information

  • 1Department of Physics and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, United Kingdom.


We report a detailed characterization of the thin film morphology of all-polymer blend devices by applying a combined analysis of physical, chemical, optical, and charge transport properties. This is exemplified by considering a model system comprising poly(3-hexylthiophene) (P3HT) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT). We show that the interactions between the two conjugated polymer components can be controlled by pre-forming the P3HT into highly ordered nanowire structures prior to blending with F8BT, and by varying the molecular weight of the F8BT. As a result, it is possible to produce films containing highly ordered P3HT with hole mobilities enhanced by three orders of magnitude over the pristine blends. Raman spectroscopy under resonant excitation conditions is used to probe the molecular order of both P3HT and F8BT phases within the blend films and these morphological studies are complemented by measurements of photocurrent generation. The resultant increase in photocurrent is associated with the enhanced charge carrier mobilities. The complementary analytical method demonstrated here is applicable to a wide range of polymer blend systems for all applications where the relationships between morphology and device performance are of interest.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Institute of Physics
    Loading ...
    Write to the Help Desk