Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Psychopharmacology (Berl). 2014 Jan;231(1):159-66. doi: 10.1007/s00213-013-3221-7. Epub 2013 Aug 10.

7,8-Dihydroxyflavone, a TrkB agonist, attenuates behavioral abnormalities and neurotoxicity in mice after administration of methamphetamine.

Author information

  • 1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.

Abstract

RATIONALE:

It is widely recognized that methamphetamine (METH) induces behavioral abnormalities and dopaminergic neurotoxicity in the brain. Several lines of evidence suggest a role for brain-derived neurotrophic factor (BDNF) and its specific receptor, tropomyosin-related kinase (TrkB), in METH-induced behavioral abnormalities.

OBJECTIVE:

In this study, we examined whether 7,8-dihydroxyflavone (7,8-DHF), a novel potent TrkB agonist, could attenuate behavioral abnormalities and dopaminergic neurotoxicity in mice after administration of METH.

RESULTS:

Pretreatment with 7,8-DHF (3.0, 10, or 30 mg/kg), but not the inactive TrkB compound, 5,7-dihydroxyflavone (5,7-DHF) (30 mg/kg), attenuated hyperlocomotion in mice after a single administration of METH (3.0 mg/kg), in a dose-dependent manner. The development of behavioral sensitization after repeated administration of METH (3.0 mg/kg/day, once daily for 5 days) was significantly attenuated by pretreatment with 7,8-DHF (10 mg/kg). Furthermore, pretreatment and subsequent administration of 7,8-DHF (10 mg/kg) attenuated the reduction of dopamine transporter (DAT) in the striatum after repeated administration of METH (3.0 mg/kg × 3 at 3-hourly intervals). Treatment with ANA-12 (0.5 mg/kg), a potent TrkB antagonist, blocked the protective effects of 7,8-DHF on the METH-induced reduction of DAT in the striatum. Moreover, 7,8-DHF attenuated microglial activation in the striatum after repeated administration of METH.

CONCLUSIONS:

These findings suggest that 7,8-DHF can ameliorate behavioral abnormalities as well as dopaminergic neurotoxicity in mice after administration of METH. It is likely, therefore, that TrkB agonists such as 7,8-DHF may prove to be potential therapeutic drugs for several symptoms associated with METH abuse in humans.

PMID:
23934209
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Springer
    Loading ...
    Write to the Help Desk