Format

Send to

Choose Destination
See comment in PubMed Commons below
Hum Mol Genet. 2013 Dec 20;22(25):5188-98. doi: 10.1093/hmg/ddt373. Epub 2013 Aug 6.

A defective Krab-domain zinc-finger transcription factor contributes to altered myogenesis in myotonic dystrophy type 1.

Author information

  • 1INSERM UMR 861, I-Stem AFM, Evry Cedex 91030, France.

Abstract

Myotonic dystrophy type 1 (DM1) is an RNA-mediated disorder caused by a non-coding CTG repeat expansion that, in particular, provokes functional alteration of CUG-binding proteins. As a consequence, several genes with misregulated alternative splicing have been linked to clinical symptoms. In our search for additional molecular mechanisms that would trigger functional defects in DM1, we took advantage of mutant gene-carrying human embryonic stem cell lines to identify differentially expressed genes. Among the different genes found to be misregulated by DM1 mutation, one strongly downregulated gene encodes a transcription factor, ZNF37A. In this paper, we show that this defect in expression, which derives from a loss of RNA stability, is controlled by the RNA-binding protein, CUGBP1, and is associated with impaired myogenesis-a functional defect reminiscent of that observed in DM1. Loss of the ZNF37A protein results in changes in the expression of the subunit α1 of the receptor for the interleukin 13. This suggests that the pathological molecular mechanisms linking ZNF37A and myogenesis may involve the signaling pathway that is known to promote myoblast recruitment during development and regeneration.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk