Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Photochem Photobiol B. 2013 Oct 5;127:1-7. doi: 10.1016/j.jphotobiol.2013.07.012. Epub 2013 Jul 20.

Toxic effects of mercury on PSI and PSII activities, membrane potential and transthylakoid proton gradient in Microsorium pteropus.

Author information

  • 1Key Lab of Plateau Lake Ecology & Global Change, College of Tourism and Geographic Science, Yunnan Provincial Key Laboratory of Plateau Geographical Process and Environmental Change, Yunnan Normal University, Kunming 650500, China; Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.

Abstract

Mercury (Hg) is one of the top toxic metals in environment and it poses a great risk to organisms. This study aimed to elucidate the toxic effects of Hg(2+) on energy conversion of photosystem I (PSI) and photosystem II (PSII), membrane potential and proton gradient of Microsorium pteropus (an aquatic plant species). Contents of chlorophyll a, chlorophyll b and carotenoids, quantum yield and electron transfer of PSI and PSII of M. pteropus exposed to various concentrations of Hg(2+) were measured. With increasing Hg(2+) concentration, quantum yield and electron transport of PSI [Y(I) and ETR(I)] and PSII [Y(II) and ETR(II)] decreased whereas limitation of donor side of PSI [Y(ND)] increased. At ⩾165μgL(-1) Hg(2+), quantum yield of non-light-induced non-photochemical fluorescence quenching in PSII [Y(NO)] significantly increased but quantum yield of light-induced non-photochemical fluorescence quenching [Y(NPQ)] decreased. Membrane potential (Δψ) and proton gradient (ΔpH) of M. pteropus were reduced significantly at 330μg L(-1) Hg(2+) compared to control. Mercury exposure affected multiple sites in PSII and PSI of M. pteropus.

Copyright © 2013 Elsevier B.V. All rights reserved.

KEYWORDS:

Aquatic plant; Membrane potential; Mercury; Photosystem I; Proton gradient

PMID:
23920143
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk