Display Settings:

Format

Send to:

Choose Destination
J Phys Condens Matter. 2013 Aug 28;25(34):346003.

Local structure and hyperfine interactions of 57Fe in NaFeAs studied by Mössbauer spectroscopy.

Author information

  • 1Lomonosov Moscow State University, Moscow, 119992 Leninskie Gory, Moscow, Russia.

Abstract

Detailed 57Fe Mössbauer spectroscopy measurements on superconducting NaFeAs powder samples have been performed in the temperature range 13 K ≤ T < 300 K. The 57Fe spectra recorded in the paramagnetic range (T > TN ≈ 46 K) are discussed supposing that most of the Fe2+ ions are located in distorted (FeAs4) tetrahedra of NaFeAs phase, while an additional minor (<10%) component of the spectra corresponds to impurity or intergrowth NaFe2As2 phase with a nominal composition near NaFe2As2. Our results reveal that the structural transition (TS ≈ 55 K) has a weak effect on the electronic structure of iron ions, while at T ≤ TN the spectra show a continuous distribution of hyperfine fields HFe. The shape of these spectra is analyzed in terms of two models: (i) an incommensurate spin density wave modulation of iron magnetic structure, (ii) formation of a microdomain structure or phase separation. It is shown that the hyperfine parameters obtained using these two methods have very similar values over the whole temperature range. Analysis of the temperature dependence HFe(T) with the Bean–Rodbell model leads to ζ = 1.16 ± 0.05, suggesting that the magnetic phase transition is first order in nature. A sharp evolution of the VZZ(T) and η(T) parameters of the full Hamiltonian of hyperfine interactions near T ≈ (TN,TS) is interpreted as a manifestation of the anisotropic electron redistribution between the dxz-, dyz- and dxy-orbitals of the iron ions.

PMID:
23913008
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for IOP Publishing Ltd.
    Loading ...
    Write to the Help Desk