Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Zhong Yao Cai. 2013 Feb;36(2):176-80.

[Effects of conjunctive application of Chinese herbal medicine residue compost and chemical fertilizer on ferulic acid and ligustilide contents in Angelica sinensis].

[Article in Chinese]

Author information

  • 1Department of Medicine, Gansu College of Traditional Chinese Medicine, Lanzhou 730000, China. fanqin408@126.com

Abstract

OBJECTIVE:

To investigate the effects of conjunctive application of Chinese herbal medicine residue compost (CHMRC) and chemical fertilizer on ferulic acid and ligustilide contents in Angelica sinensis.

METHODS:

There were six treatments, viz. T1: control (no fertilizer), T2: chemical fertilizer (the fertilizer rates for N, P2O5 and K2O were 90, 90 and 60 kg/hm2, respectively), T3:1 350 kg/hm2 CHMRC, 86 kg/hm2N, 84 kg/hm2 P2O5 and 52 kg/hm2 K2O, T4:2 250 kg/hm2 CHMRC, 83 kg/hm2N, 81 kg/hm2 P2O5 and 47 kg/hm2 K2O, T5: 3 150 kg/hm2 CHMRC, 82 kg/hm2N, 77 kg/hm2 P2O5 and 42 kg/hm2 K2O, and T6: CHMRC at 4 500 kg/hm2 (nitrogen application rate was the same as T2).

RESULTS:

Along with growth stages, the changing trend of ferulic acid and ligustilide contents from all treatments showed a "J"-shaped curve; Ferulic acid and ligustilide contents in the roots at the harvest were increased compared with the beginning by over 16.0% and 117.0%, respectively, in which the maximum increasing rates of ferulic acid and ligustilide contents occurred in the chemical fertilizer treatment (T2), and reached at 68.4% and 176.6%, respectively; Compared with control, T2, T5 and T6 significantly increased ferulic acid content by 19.2% - 25.6%, and ligustilide content by 9.1% - 11.2% (P < 0.05).

CONCLUSION:

The results are obtained as following: the application of CHMRC and/or chemical fertilizer does not change the chemical composition in the root of Angelica sinensis, but has some effects on the content of related ingredients. This research indicates that T5 should be recommended for Angelica sinensis growing, which will ensure a production of high quality, low cost and environment-friendly.

PMID:
23901638
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk