Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mech Dev. 2013 Nov-Dec;130(11-12):519-31. doi: 10.1016/j.mod.2013.07.002. Epub 2013 Jul 24.

Histone H3 lysine 9 methyltransferases, G9a and GLP are essential for cardiac morphogenesis.

Author information

  • 1Mitsubishi Kagaku Institute of Life Sciences, Machida 194-8511, Japan.

Abstract

Lysine methylation of the histone tail is involved in a variety of biological events. G9a and GLP are known as major H3-K9 methyltransferases and contribute to transcriptional silencing. The functions of these genes in organogenesis remain largely unknown. Here, we analyzed the phenotypes of cardiomyocyte specific GLP knockout and G9a knockdown (GLP-KO/G9a-KD) mice. The H3-K9 di-methylation level decreased markedly in the nuclei of the cardiomyocytes of GLP-KO/G9a-KD mice, but not single G9a or GLP knockout mice. In addition, GLP-KO/G9a-KD mice showed neonatal lethality and severe cardiac defects (atrioventricular septal defects, AVSD). We also showed that hypoplasia in the atrioventricular cushion, which is a main part of the atrioventricular septum, caused AVSD. Expression analysis revealed downregulation of 2 AVSD related genes and upregulation of several non-cardiac specific genes in the hearts of GLP-KO/G9a-KD mice. These data indicate that G9a and GLP are required for sufficient H3-K9 di-methylation in cardiomyocytes and regulation of expression levels in multiple genes. Moreover, our findings show that G9a and GLP have an essential role in normal morphogenesis of the atrioventricular septum through regulation of the size of the atrioventricular cushion.

Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

KEYWORDS:

Atrioventricular cushion; Atrioventricular septal defects; Cardiogenesis; Gene repression; Histone H3 lysine 9 methyltransferase

PMID:
23892084
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk