Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Sci Rep. 2013;3:2291. doi: 10.1038/srep02291.

Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe(11.6)Si(1.4)C(0.2)H(1.7).

Author information

  • 1State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Abstract

Both microwave absorption and magnetocaloric effect (MCE) are two essential performances of magnetic materials. We observe that LaFe(11.6)Si(1.4)C(0.2)H(1.7) intermetallic compound exhibits the advantages of both giant microwave absorption exceeding -42 dB and magnetic entropy change of -20 Jkg(-1)K(-1). The excellent electromagnetic wave absorption results from the large magnetic loss and dielectric loss as well as the efficient complementarity between relative permittivity and permeability. The giant MCE effect in this material provides an ideal technique for cooling the MAMs to avoid temperature increase and infrared radiation during microwave absorption. Our finding suggests that we can integrate the giant microwave absorption with magnetic refrigeration in one multifunctional material. This integration not only advances our understanding of the correlation between microwave absorption and MCE, but also can open a new avenue to exploit microwave devices and electromagnetic stealth.

PMID:
23887357
[PubMed]
PMCID:
PMC3724178
Free PMC Article

Images from this publication.See all images (9)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk