Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Analyst. 2013 Sep 21;138(18):5396-403. doi: 10.1039/c3an00705g. Epub 2013 Jul 24.

Dual signal amplification of zinc oxide nanoparticles and quantum dots-functionalized zinc oxide nanoparticles for highly sensitive electrochemiluminescence immunosensing.

Author information

  • 1Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.

Abstract

A novel electrochemiluminescence (ECL) immunosensor for highly sensitive detection of α-fetoprotein (AFP) based on a dual signal amplification strategy was developed. Zinc oxide (ZnO) nanoparticles were employed as the carriers for immobilizing the capture AFP antibody (Ab1) and CdSe quantum dots (QDs). CdSe QDs-functionalized ZnO nanoparticles were used as the tracer to label the signal AFP antibody (Ab2). CdSe QDs-functionalized ZnO nanoparticles were prepared through an amide dehydration reaction and they were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. The Ab2 was bound to the CdSe QDs-functionalized ZnO nanoparticles to obtain the detection probe. ZnO nanoparticles could accelerate electron transfer between the detection probe and the electrode, and their large surface area was beneficial for loading more CdSe QDs, leading to an enhanced ECL signal (0.9-fold increase) by a sandwich immunoreaction. This also indicated efficient association of the detection probe on the immunosensor surface. The designed immunoassay showed a wide linear range from 0.5 to 600 ng mL(-1) with a detection limit of 0.48 ng mL(-1) at a S/N ratio of 3 for AFP detection. The ECL immunosensor exhibited good analytical performance and was successfully applied to clinical sample detection, showing a promising application in ECL biosensing.

PMID:
23882462
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk