Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 2013 Oct 15;455(2):185-93. doi: 10.1042/BJ20130576.

The reduction in σ-promoter recognition flexibility as induced by core RNAP is required for σ to discern the optimal promoter spacing.

Author information

  • 1*Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, ROC.


Sigma (σ) factors are bacterial transcription initiation factors that direct transcription at cognate promoters. The promoters recognized by primary σ are composed of -10 and -35 consensus elements separated by a spacer of 17±1 bp for optimal activity. However, how the optimal promoter spacing is sensed by the primary σ remains unclear. In the present study, we examined this issue using a transcriptionally active Bacillus subtilis N-terminally truncated σA (SND100-σA). The results of the present study demonstrate that SND100-σA binds specifically to both the -10 and -35 elements of the trnS spacing variants, of which the spacer lengths range from 14 to 21 bp, indicating that simultaneous and specific recognition of promoter -10 and -35 elements is insufficient for primary σ to discern the optimal promoter spacing. Moreover, shortening in length of the flexible linker between the two promoter DNA-binding domains of σA also does not enable SND100-σA to sense the optimal promoter spacing. Efficient recognition of optimal promoter spacing by SND100-σA requires core RNAP (RNA polymerase) which reduces the flexibility of simultaneous and specific binding of SND100-σA to both promoter -10 and -35 elements. Thus the discrimination of optimal promoter spacing by σ is core-dependent.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk