Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Ethnopharmacol. 2013 Sep 16;149(2):478-89. doi: 10.1016/j.jep.2013.07.002. Epub 2013 Jul 16.

Wen Luo Yin inhibits angiogenesis in collagen-induced arthritis rat model and in vitro.

Author information

  • 1Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.

Abstract

ETHNOPHARMACOLOGICAL RELEVANCE AND AIM OF THE STUDY:

Wen Luo Yin (WLY) is a traditional Chinese formula, which has the traditional use of scattering cold pathogen, draining dampness, freeing the flow of network vessels and relieving pains. It is extensively used in the treatment of rheumatoid arthritis (RA) patients for more than 2000 years, but its actions on angiogenesis of RA have not been clarified. The present study aims to determine the anti-angiogenic activity of WLY on collagen-induced arthritis (CIA) rat model and in human fibroblast-like synoviocytes of RA (HFLS-RA) and human umbilical vein endothelial cells (HUVEC).

MATERIALS AND METHODS:

For in vivo experiment, arthritis was induced by immunization with bovine II collagen in DA rats. Treatment with WLY (3.45, 6.9, 13.8 g/kg, p.o., daily), or vehicle began from day 1 to day 28 of first immunization. The arthritis score, arthritis incidence, microfocal computed tomography analysis and histopathology evaluation of inflamed joints were assessed. Angiogenesis was measured by synovial vessel density with immunohistochemistry and histomorphometric analysis in synovial membrane tissues of joints. For in vitro experiments, HFLS-RA and HUVEC were used. Assays to determine HFLS-RA migration and adhesion were performed in the presence of vascular endothelial growth factor (VEGF)165 or interleukin (IL)-1β and/or the WLY (8, 16, 32 mg/ml). Angiogenesis was assessed by measuring the migration, adhesion, and tube formation of HUVEC. Further the effect of treatment with WLY on expression levels of angiogenic activators in sera of CIA rats and in IL-1β-induced HFLS-RA were evaluated by enzyme linked immunosorbent assay.

RESULTS:

WLY significantly decreased the arthritis score and arthritis incidence, and inhibited inflammation, pannus formation, cartilage and bone destruction of inflamed joints in CIA rats. More interestingly, doses of 3.45-13.8 g/kg WLY could markedly reduce the capillaries, small, medium and large vessel density in synovial membrane tissues of inflamed joints. Moreover, WLY suppressed the VEGF-induced chemotactic migration of HFLS-RA and HUVEC, and inhibited matrigel-induced cell adhesion of them. It also disrupted tube formation of HUVEC on matrigel. Furthermore, WLY significantly reduced the expression of angiogenic activators including tumor necrosis factor-α, IL-1β, IL-17, VEGF, VEGFR, angiopoietin (Ang)-1, Ang-2 and Ang-2 receptor in sera of CIA rats and/or in IL-1β-induced HFLS-RA/HUVEC.

CONCLUSIONS:

Our data suggest for the first time that WLY posses the anti-angiogenic effect in RA both in vivo and in vitro by downregulating angiogenic activators.

© 2013 Elsevier Ireland Ltd. All rights reserved.

KEYWORDS:

Angiogenesis; Angiogenic activator; Pannus; Rheumatoid arthritis; Wen Luo Yin

PMID:
23872253
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk