Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Stem Cell. 2013 Sep 5;13(3):351-9. doi: 10.1016/j.stem.2013.06.004. Epub 2013 Jul 11.

FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency.

Author information

  • 1Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK. gabriella.ficz@babraham.ac.uk

Abstract

Genome-wide erasure of DNA methylation takes place in primordial germ cells (PGCs) and early embryos and is linked with pluripotency. Inhibition of Erk1/2 and Gsk3β signaling in mouse embryonic stem cells (ESCs) by small-molecule inhibitors (called 2i) has recently been shown to induce hypomethylation. We show by whole-genome bisulphite sequencing that 2i induces rapid and genome-wide demethylation on a scale and pattern similar to that in migratory PGCs and early embryos. Major satellites, intracisternal A particles (IAPs), and imprinted genes remain relatively resistant to erasure. Demethylation involves oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), impaired maintenance of 5mC and 5hmC, and repression of the de novo methyltransferases (Dnmt3a and Dnmt3b) and Dnmt3L. We identify a Prdm14- and Nanog-binding cis-acting regulatory region in Dnmt3b that is highly responsive to signaling. These insights provide a framework for understanding how signaling pathways regulate reprogramming to an epigenetic ground state of pluripotency.

Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

PMID:
23850245
[PubMed - indexed for MEDLINE]
PMCID:
PMC3765959
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk