Format

Send to

Choose Destination
See comment in PubMed Commons below
ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7042-9. doi: 10.1021/am401313x. Epub 2013 Jul 24.

Silica cross-linked micelles loading with silicon nanoparticles: preparation and characterization.

Author information

  • 1Institut de Recherche Interdisciplinaire, CNRS USR 3078, Université Lille 1, Parc de la Haute Borne, 50 avenue de Halley, 59658 Villeneuve d'Ascq, France. guohui.pan@aliyun.com

Abstract

A new family of luminescent and stable silicon-based nanoparticles (NPs), silica cross-linked pluronic F127 (PF127) micelles loaded with decyl capped silicon nanoparticles (decyl-SiNPs), were synthesized in aqueous media. The decyl-SiNPs were prepared by first liberating hydride terminated SiNPs (H-SiNPs) from a porous silicon matrix followed by their functionalization via hydrosilylation with 1-decene under photochemical activation. The silicon-based NPs exhibit bright photoluminescence (PL) with a quantum yield of ∼3.8% and peaking at ∼2.0 eV, which lies within the transmission window that is useful for biological imaging. They display a hydrodynamic size of ∼25 nm with exterior polyethylene oxide (PEO) blocks stretching out in aqueous media. Chloroform was found to quench the excitation at energy above 4.9 eV by shielding the incident light or relaxing the charge carriers, which highlights that caution against solvent interference should be taken when performing the studies on PL origin and luminescence efficiency of SiNPs. For PF127, the blocks of hydrophilic PEO participate in the PL quenching, while poly(propylene oxide) (PPO) does not. The colloidal solution displays excellent PL stability against salt (NaCl) and temperature but is susceptible to basic solution at pH above 9.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk