Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Proteome Res. 2013 Sep 6;12(9):3843-56. doi: 10.1021/pr301044b. Epub 2013 Aug 6.

Comparative analysis of dynamic proteomic profiles between in vivo and in vitro produced mouse embryos during postimplantation period.

Author information

  • 1Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China.

Abstract

Assisted reproductive technology (ART) increasingly is associated with long-term side-effects on postnatal development and behaviors. High-throughput gene expression analysis has been extensively used to explore mechanisms responsible for these disorders. Our study, for the first time, provides a comparative proteomic analysis between embryos after in vivo fertilization and development (IVO, control) and in vitro fertilization and culture (IVP). By comparing the dynamic proteome during the postimplantation period, we identified 300 and 262 differentially expressed proteins (DEPs) between IVO and IVP embryos at embryonic day 7.5 (E7.5) and E10.5, respectively. Bioinformatic analysis showed many DEPs functionally associated with post-transcriptional, translational, and post-translational regulation, and these observations were consistent with correlation analysis between mRNA and protein abundance. In addition to altered gene expression due to IVP procedures, our findings suggest that aberrant processes at these various levels also contributed to proteomic alterations. In addition, numerous DEPs were involved in energy and amino acid metabolism, as well as neural and sensory development. These DEPs are potential candidates for further exploring the mechanism(s) of ART-induced intrauterine growth restriction and neurodevelopmental disorders. Moreover, significant enrichment of DEPs in pathways of neurodegenerative diseases implies the potentially increased susceptibility of ART offspring to these conditions as adults.

PMID:
23841881
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk