Format

Send to:

Choose Destination
See comment in PubMed Commons below
Environ Technol. 2013 Mar-Apr;34(5-8):637-44.

Application of microwave-irradiated manganese dioxide in the removal of polychlorinated biphenyls from soil contaminated by capacitor oil.

Author information

  • 1Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

Abstract

The removal of polychlorinated biphenyls (PCBs) from soil contaminated with capacitor oil, using microwave (MW)-irradiated manganese dioxide (MnO2), was examined under different conditions. The effects of different types of MnO2 added as oxidant, as well as the initial amount of water, MnO2, and sulphuric acid solution, were also investigated. The removal efficiencies for dichlorobiphenyls, trichlorobiphenyls, tetrachlorobiphenyls, pentachlorobiphenyls, hexachloro-biphenyls, heptachlorobiphenyls, and octachlorobiphenyls were approximately 95.9%, 82.5%, 52.0%, 71.6%, 62.5%, 28.6%, and 16.1%, respectively, by 800 W MW irradiation for 45 min with the assistance of 0.1 g delta-MnO2 and 0.2 mL water in 1.0 g severely PCB-contaminated soil (sigma PCB = 1560.82 mg/kg); meanwhile, the concentrations of Mn2+ ions detected were from 10.6 +/- 1.9 mg/kg at 0 min to 108.2 +/- 7.8 mg/kg after 45 min MW irradiation, indicating that MnO2 acted as not only a MW absorber but also an oxidizer. Removal efficiencies of PCBs from contaminated soil increased with increasing the amounts of water and MnO2 added. The type of MnO2 also affected the removal of PCBs, following an order of delta-MnO2 > alpha-MnO2 > beta-MnO2. The addition of low concentration of sulphuric acid (such as 1.0 mol/L) solution was favourable for the removal of low chloro-substituted PCBs, but the addition of more than 1.0 mol/L sulphuric acid reduced the removal of all PCBs. The pronounced removal of PCBs from contaminated soil in a short treatment time indicates that MW irradiation with the assistance of MnO2 is an efficient and promising technology for the remediation of PCB-contaminated soil.

PMID:
23837313
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk