Format

Send to:

Choose Destination
See comment in PubMed Commons below
CPT Pharmacometrics Syst Pharmacol. 2012 Nov 21;1:e15. doi: 10.1038/psp.2012.16.

Multiscale kinetic modeling of liposomal Doxorubicin delivery quantifies the role of tumor and drug-specific parameters in local delivery to tumors.

Author information

  • 1Merrimack Pharmaceuticals, Cambridge, Massachusetts, USA.

Abstract

Nanoparticle encapsulation has been used as a means to manipulate the pharmacokinetic (PK) and safety profile of drugs in oncology. Using pegylated liposomal doxorubicin (PLD) vs. conventional doxorubicin as a model system, we developed and experimentally validated a multiscale computational model of liposomal drug delivery. We demonstrated that, for varying tumor transport properties, there is a regimen where liposomal and conventional doxorubicin deliver identical amounts of doxorubicin to tumor cell nuclei. In mice, typical tumor properties consistently favor improved delivery via liposomes relative to free drug. However, in humans, we predict that some tumors will have properties wherein liposomal delivery delivers the identical amount of drug to its target relative to dosing with free drug. The ability to identify tumor types and/or individual patient tumors with high degree of liposome deposition may be critical for optimizing the success of nanoparticle and liposomal anticancer therapeutics.CPT: Pharmacometrics & Systems Pharmacology (2012) 1, e15; doi:10.1038/psp.2012.16; advance online publication 21 November 2012.

PMID:
23835797
[PubMed]
PMCID:
PMC3600732
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk