Functional derivatives of meta-generalized gradient approximation (meta-GGA) type exchange-correlation density functionals

J Chem Phys. 2013 Jun 28;138(24):244108. doi: 10.1063/1.4811270.

Abstract

Meta-generalized gradient approximation (meta-GGA) exchange-correlation density functionals depend on the Kohn-Sham (KS) orbitals through the kinetic energy density. The KS orbitals in turn depend functionally on the electron density. However, the functional dependence of the KS orbitals is indirect, i.e., not given by an explicit expression, and the computation of analytic functional derivatives of meta-GGA functionals with respect to the density imposes a challenge. The practical solution used in many computer implementations of meta-GGA density functionals for ground-state calculations is abstracted and generalized to a class of density functionals that is broader than meta-GGAs and to any order of functional differentiation. Importantly, the TDDFT working equations for meta-GGA density functionals are presented here for the first time, together with the technical details of their computer implementation. The analysis presented here also uncovers the implicit assumptions in the practical solution to computing functional derivatives of meta-GGA density functionals. The connection between the approximation that is invoked in taking functional derivatives of density functionals, the non-uniqueness with respect to the KS orbitals, and the non-locality of the resultant potential is also discussed.