Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J R Soc Interface. 2013 Jun 19;10(85):20130187. doi: 10.1098/rsif.2013.0187. Print 2013 Aug 6.

A natural O-ring optimizes the dispersal of fungal spores.

Author information

  • 1School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA. jfritz@seas.harvard.edu

Abstract

The forcibly ejected spores of ascomycete fungi must penetrate several millimetres of nearly still air surrounding sporocarps to reach dispersive airflows, and escape is facilitated when a spore is launched with large velocity. To launch, the spores of thousands of species are ejected through an apical ring, a small elastic pore. The startling diversity of apical ring and spore shapes and dimensions make them favoured characters for both species descriptions and the subsequent inference of relationships among species. However, the physical constraints shaping this diversity and the adaptive benefits of specific morphologies are not understood. Here, we develop an elastohydrodynamic theory of the spore's ejection through the apical ring and demonstrate that to avoid enormous energy losses during spore ejection, the four principal morphological dimensions of spore and apical ring must cluster within a nonlinear one-dimensional subspace. We test this prediction using morphological data for 45 fungal species from two different classes and 18 families. Our sampling encompasses multiple loss and gain events and potentially independent origins of this spore ejection mechanism. Although the individual dimensions of the spore and apical ring are only weakly correlated with each other, they collapse into the predicted subspace with high accuracy. The launch velocity appears to be within 2 per cent of the optimum for over 90 per cent of all forcibly ejected species. Although the morphological diversity of apical rings and spores appears startlingly diverse, a simple principle can be used to organize it.

KEYWORDS:

elastohydrodynamics; fluid dynamics; fungi; morphological diversity; optimization; spore dispersal

PMID:
23782534
[PubMed - indexed for MEDLINE]
PMCID:
PMC3971719
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk