Send to:

Choose Destination
See comment in PubMed Commons below
Dent Mater. 2013 Aug;29(8):888-97. doi: 10.1016/ Epub 2013 Jun 13.

Adhesive interfacial interaction affected by different carbon-chain monomers.

Author information

  • 1KU Leuven BIOMAT, Department of Oral Health Research, KU Leuven (University of Leuven) & Dentistry, University Hospitals Leuven, Belgium.



The functional monomer 10-methacryloxydecyl dihydrogen phosphate (10-MDP), recently used in more self-etch adhesives, chemically bonds to hydroxyapatite (HAp) and thus tooth tissue. Although the interfacial interaction of the phosphoric-acid functional group of 10-MDP with HAp-based substrates has well been documented, the effect of the long carbon-chain spacer of 10-MDP on the bonding effectiveness is far from understood.


We investigated three phosphoric-acid monomers, 2-methacryloyloxyethyl dihydrogen phosphate (2-MEP), 6-methacryloyloxyhexyl dihydrogen phosphate (6-MHP) and 10-MDP, that only differed for the length of the carbon chain, on their chemical interaction potential with HAp and dentin, this correlatively using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Commercial 6-MHP and 10-MDP containing adhesives were investigated as well.


XRD revealed that on HAp only 10-MDP produced monomer-calcium salts in the form of 'nano-layering', while on dentin all monomers produced 'nano-layering', but with a varying intensity in the order of 10-MDP>6-MHP>2-MEP. TEM confirmed that 10-MDP formed the thickest hybrid and adhesive layer. XRD and TEM revealed 'nano-layering' for all commercial adhesives on dentin, though less intensively for the 6-MHP containing adhesive than for the 10-MDP ones.


It is concluded that not only the phosphoric-acid group but also the spacer group, and its length, affect the chemical interaction potential with HAp and dentin. In addition, the relatively strong 'etching' effect of 10-MDP forms more stable monomer-Ca salts, or 'nano-layering', than the two shorter carbon-chain monomers tested, thereby explaining, at least in part, the better bond durability documented with 10-MDP containing adhesives.

Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.


Adhesive; Dentin; Functional monomer; TEM; X-ray diffraction

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk