Send to:

Choose Destination
See comment in PubMed Commons below
Nano Lett. 2013 Jul 10;13(7):3439-43. doi: 10.1021/nl4021123. Epub 2013 Jun 14.

Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges.

Author information

  • 1Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, People's Republic of China.


The atomic layer of hybridized hexagonal boron nitride (h-BN) and graphene has attracted a great deal of attention after the pioneering work of P. M. Ajayan et al. on Cu foils because of their unusual electronic properties (Ci, L. J.; et al. Nat. Mater. 2010, 9, 430-435). However, many fundamental issues are still not clear, including the in-plane atomic continuity as well as the edge type at the boundary of hybridized h-BN and graphene domains. To clarify these issues, we have successfully grown a perfect single-layer h-BN-graphene (BNC) patchwork on a selected Rh(111) substrate, via a two-step patching growth approach. With the ideal sample, we convinced that at the in-plane linking interface, graphene and h-BN can be linked perfectly at an atomic scale. More importantly, we found that zigzag linking edges were preferably formed, as demonstrated by atomic-scale scanning tunneling microscopy images, which was also theoretically verified using density functional theory calculations. We believe the experimental and theoretical works are of particular importance to obtain a fundamental understanding of the BNC hybrid and to establish a deliberate structural control targeting high-performance electronic and spintronic devices.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk