Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Iperception. 2013 Feb 25;4(2):95-7. doi: 10.1068/i0580ic. Print 2013.

Weak priors versus overfitting of predictions in autism: Reply to Pellicano and Burr (TICS, 2012).

Author information

  • 1Department of Experimental Psychology, University of Leuven, Leuven, Tiensestraat 102, Belgium; E-mail: sander.vandecruys@ppw.kuleuven.be.

Abstract

Pellicano and Burr (2012) argue that a Bayesian framework can help us understand the perceptual peculiarities in autism. We agree, but we think that their assumption of uniformly flat or equivocal priors in autism is not empirically supported. Moreover, we argue that any full account has to take into consideration not only the nature of priors in autism, but also how these priors are constructed or learned. We argue that predictive coding provides a more constrained framework that very naturally explains how priors are constructed in autism leading to strong, but overfitted, and non-generalizable predictions.

KEYWORDS:

Bayes; autism; perception; predictive coding; priors; vision

PMID:
23755353
[PubMed]
PMCID:
PMC3677336
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk