Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuropsychopharmacology. 2013 Nov;38(12):2456-66. doi: 10.1038/npp.2013.147. Epub 2013 Jun 10.

CRF-CRF1 receptor system in the central and basolateral nuclei of the amygdala differentially mediates excessive eating of palatable food.

Author information

  • 1Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.

Abstract

Highly palatable foods and dieting are major contributing factors for the development of compulsive eating in obesity and eating disorders. We previously demonstrated that intermittent access to palatable food results in corticotropin-releasing factor-1 (CRF1) receptor antagonist-reversible behaviors, which include excessive palatable food intake, hypophagia of regular chow, and anxiety-like behavior. However, the brain areas mediating these effects are still unknown. Male Wistar rats were either fed chow continuously for 7 days/week (Chow/Chow group), or fed chow intermittently 5 days/week, followed by a sucrose, palatable diet 2 days/week (Chow/Palatable group). Following chronic diet alternation, the effects of microinfusing the CRF1 receptor antagonist R121919 (0, 0.5, 1.5 μg/side) in the central nucleus of the amygdala (CeA), the basolateral nucleus of the amygdala (BlA), or the bed nucleus of the stria terminalis (BNST) were evaluated on excessive intake of the palatable diet, chow hypophagia, and anxiety-like behavior. Furthermore, CRF immunostaining was evaluated in the brain of diet cycled rats. Intra-CeA R121919 blocked both excessive palatable food intake and anxiety-like behavior in Chow/Palatable rats, without affecting chow hypophagia. Conversely, intra-BlA R121919 reduced the chow hypophagia in Chow/Palatable rats, without affecting excessive palatable food intake or anxiety-like behavior. Intra-BNST treatment had no effect. The treatments did not modify the behavior of Chow/Chow rats. Immunohistochemistry revealed an increased number of CRF-positive cells in CeA--but not in BlA or BNST--of Chow/Palatable rats, during both withdrawal and renewed access to the palatable diet, compared with controls. These results provide functional evidence that the CRF-CRF1 receptor system in CeA and BlA has a differential role in mediating maladaptive behaviors resulting from palatable diet cycling.

PMID:
23748225
[PubMed - indexed for MEDLINE]
PMCID:
PMC3799065
[Available on 2014/11/1]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk