Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neurochem Int. 2013 Sep;63(3):121-32. doi: 10.1016/j.neuint.2013.05.010. Epub 2013 Jun 4.

Platelet-activating factor receptor knockout mice are protected from MPTP-induced dopaminergic degeneration.

Author information

  • 1Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, Republic of Korea.

Abstract

Platelet-activating factor (PAF), a potent mediator of inflammatory and immune responses, plays various roles in neuronal functions. However, little is known about the role of PAF/platelet-activating factor receptor (PAF-R) in Parkinson's disease. Treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) resulted in significant increases in PAF species in the striatum of wild-type mice. These increases paralleled PAF-R gene expression in wild-type mice. Although nuclear factor kappa B (NF-κB) DNA-binding activity was increased significantly in MPTP-treated wild-type mice, this increase was not significant in PAF-R antagonist ginkgolide B (GB)-treated mice or PAF-R knockout (PAF-R(-/-)) mice. Pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, significantly ameliorated the dopaminergic deficits induced by MPTP in wild-type mice. MPTP treatment significantly increased oxidative damage, the immunoreactivity of ionized calcium binding adaptor molecule 1 (Iba-1)-positive microglial cells, and microglial differentiation of the M1 type in the striatum of wild-type mice. Consistently, PDTC significantly attenuated MPTP-induced behavioral impairments in wild-type mice. However, dopaminergic deficits, oxidative damage, reactive microglial cells, and behavioral impairments induced by MPTP were not significantly observed in GB-treated mice or PAF-R(-/-) mice. PDTC did not significantly alter the attenuations evident in MPTP-treated PAF-R(-/-) mice, indicating that NF-κB is a critical target for neurotoxic modulation of PAF-R. We propose for the first time that PAF/PAF-R can mediate dopaminergic degeneration via an NF-κB-dependent signaling process.

Copyright © 2013 Elsevier Ltd. All rights reserved.

KEYWORDS:

Dopamine; Microglia; Nuclear factor kappa B; Oxidative damage; Parkinson’s disease; Platelet-activating factor receptor; Striatum

PMID:
23743065
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk