Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Syst Biol. 2013 May 31;7:43. doi: 10.1186/1752-0509-7-43.

Structure, function, and behaviour of computational models in systems biology.

Author information

  • 1Artificial Intelligence Group, University of Jena, Ernst-Abbe-Platz 2, Jena, Germany. christian.knuepfer@uni-jena.de

Abstract

BACKGROUND:

Systems Biology develops computational models in order to understand biological phenomena. The increasing number and complexity of such "bio-models" necessitate computer support for the overall modelling task. Computer-aided modelling has to be based on a formal semantic description of bio-models. But, even if computational bio-models themselves are represented precisely in terms of mathematical expressions their full meaning is not yet formally specified and only described in natural language.

RESULTS:

We present a conceptual framework - the meaning facets - which can be used to rigorously specify the semantics of bio-models. A bio-model has a dual interpretation: On the one hand it is a mathematical expression which can be used in computational simulations (intrinsic meaning). On the other hand the model is related to the biological reality (extrinsic meaning). We show that in both cases this interpretation should be performed from three perspectives: the meaning of the model's components (structure), the meaning of the model's intended use (function), and the meaning of the model's dynamics (behaviour). In order to demonstrate the strengths of the meaning facets framework we apply it to two semantically related models of the cell cycle. Thereby, we make use of existing approaches for computer representation of bio-models as much as possible and sketch the missing pieces.

CONCLUSIONS:

The meaning facets framework provides a systematic in-depth approach to the semantics of bio-models. It can serve two important purposes: First, it specifies and structures the information which biologists have to take into account if they build, use and exchange models. Secondly, because it can be formalised, the framework is a solid foundation for any sort of computer support in bio-modelling. The proposed conceptual framework establishes a new methodology for modelling in Systems Biology and constitutes a basis for computer-aided collaborative research.

PMID:
23721297
[PubMed - indexed for MEDLINE]
PMCID:
PMC3716781
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk